astronomie
Science qui étudie les positions relatives, les mouvements, la structure et l'évolution des astres.
Principales branches
La branche la plus ancienne de l'astronomie est l'astronomie de position, ou astrométrie, dont l'objet est la détermination des positions et des mouvements des astres, l'établissement de catalogues d'étoiles, la mesure des distances stellaires et l'établissement de l'échelle astronomique de temps. La mécanique céleste, qui lui est intimement liée, traite des lois régissant les mouvements des astres ; elle permet les calculs d'orbites et l'établissement des éphémérides astronomiques. Astrométrie et mécanique céleste constituent ensemble l'astronomie fondamentale.
Beaucoup plus récente, puisqu'elle n'a pris son essor que dans la seconde moitié du xixe s., mais devenue aujourd'hui la branche principale de l'astronomie, l'astrophysique étudie la physique et l'évolution des diverses composantes de l'Univers.
À l'astrophysique se rattache la cosmologie, qui a pour objet l'étude de la structure, de l'origine et de l'évolution de l'Univers à l'échelle globale. Enfin, l'étude des possibilités d'existence de vie dans l'Univers fait l'objet d'une discipline particulière, la bioastronomie, ou exobiologie, au confluent de l'astronomie, de la biologie, de la biochimie, etc.
Quelques grandes étapes historiques
L'homme a sans doute été frappé très tôt par les phénomènes célestes, mais les Égyptiens, les Babyloniens et les Chinois sont les premiers peuples à avoir accumulé des observations astronomiques, à partir du IIIe millénaire avant J.-C., généralement à des fins pratiques (établissement du calendrier, agriculture, prévisions astrologiques) ou religieuses.
Ce sont les Grecs, à partir du vie s. avant J.-C., qui ont été à l'origine de l'astronomie scientifique. Cependant, l'autorité d'Aristote (ive s. avant J.-C.) imposa longtemps la croyance dans l'immobilité de la Terre. Le plus grand astronome observateur de l'Antiquité fut Hipparque (fin du iie s. avant J.-C.) ; son œuvre ne nous est connue que par celle de Ptolémée (fin du iie s. avant J.-C.), dont la version arabe, ou Almageste, nous est parvenue et représente une vaste compilation des connaissances astronomiques de l'Antiquité.
L'astronomie classique a pris naissance au xvie s. grâce à Copernic, qui proposa en 1543 une conception héliocentrique du monde ; puis Kepler établit de 1609 à 1619, à l'aide des observations de Tycho Brahe, les lois du mouvement des planètes ; à la même époque, Galilée effectua les premières observations du ciel à la lunette et fit de nombreuses découvertes (taches solaires, relief lunaire, phases de Vénus, satellites de Jupiter, etc.) ; enfin, Isaac Newton établit en 1687 les lois fondamentales de la mécanique céleste en déduisant des lois de Kepler et de la mécanique de Galilée le principe de la gravitation universelle.
On put, dès lors, calculer avec précision les mouvements de la Lune, des planètes et des comètes. Aux xviiie et xixe s., la mécanique céleste est devenue de plus en plus précise, ce qui permit, en 1846, de découvrir la planète Neptune à la position que lui assignaient les calculs d'Urbain Le Verrier. La fin du xviiie s. vit aussi les débuts de l'astronomie stellaire, dont William Herschel peut être regardé comme le fondateur. Dans la seconde moitié du xixe s., l'application de la photographie et de la spectroscopie à l'étude des corps célestes a permis l'essor de l'astrophysique. Au xxe s., la théorie de la relativité généralisée d'Einstein (1916) et la mise en évidence des galaxies ont renouvelé la cosmologie avant que la radioastronomie puis les techniques spatiales ne viennent ouvrir de nouvelles fenêtres pour l'étude de l'Univers.
Une science d'observation
L'astronomie est depuis les origines une science d'observation. Les grandes découvertes dans son domaine sont presque toutes liées au progrès des moyens d'observation, même si cette discipline fait désormais un usage intensif de théories et de calculs par ordinateur.
Après l'apparition de la lunette astronomique et l'invention du télescope au xviie s., c'est au xxe s. que les progrès instrumentaux ont été le plus spectaculaire. Les astronomes disposent à présent de toute une panoplie d'instruments pour étudier le ciel à toutes les longueurs d'onde, non seulement celles de la lumière visible, mais aussi celles des divers rayonnements auxquels l'œil humain n'est pas sensible : ondes radio, infrarouge, ultraviolet, rayons X, rayons γ. Des sondes spatiales visitent les planètes du système solaire et leurs satellites. Sous les montagnes ou dans la mer, d'étranges détecteurs guettent de fantomatiques particules élémentaires venues du ciel, les neutrinos. Bientôt, des dispositifs complexes permettront de détecter les ondes gravitationnelles, ces déformations de l'espace-temps émises par des astres en effondrement. Néanmoins, bien des questions concernant l'Univers restent encore sans réponse : comment se sont formées les galaxies ? Comment naissent les étoiles ? Y a-t-il des planètes analogues à la Terre autour d'autres étoiles ? Quelles sont les conditions nécessaires à l'apparition de la vie sur une planète ?
La planétologie et l'étude du système solaire
Depuis les années 1960, l'exploration spatiale a révélé l'extrême diversité des planètes et des satellites du système solaire, qu'il s'agisse des planètes telluriques, disposant d'un sol rocheux (Mercure, Vénus, la Terre, Mars) ou des planètes géantes enveloppées d'une épaisse atmosphère d'hydrogène et d'hélium, entourées d'anneaux et accompagnées d'un cortège imposant de satellites (Jupiter, Saturne, Uranus, Neptune). Parmi les neuf planètes principales du système solaire, seule la plus éloignée du Soleil, Pluton, n'a pas encore été visitée par une sonde spatiale ; il s'avère aujourd'hui qu'elle constitue, en fait, le plus volumineux représentant connu d'une famille de petites planètes transneptuniennes.
Des vestiges d'une vie passée sur Mars ?
Concernant les planètes telluriques, la grande question est de savoir pourquoi seule l'une d'entre elles, la Terre, a vu le développement de la vie. Car, si Mercure, trop petite et trop proche du Soleil, n'était vraiment pas idéale, Vénus et Mars, aux premiers temps du système solaire, n'étaient pas fondamentalement différentes de la Terre. Pour Vénus, l'emballement de l'effet de serre explique sans doute que son atmosphère, composée en majorité de gaz carbonique, soit devenue extrêmement dense et étouffante.
Quant à Mars, il semble que de l'eau ait coulé en abondance à sa surface il y a deux ou trois milliards d'années ; il n'est donc pas exclu qu'une vie primitive y soit apparue et s'y soit un moment développée dans un passé lointain : c'est ce que nous apprendra peut-être la flottille de sondes qui doit poursuivre l'exploration de la planète dans les années à venir. Que s'est-il donc passé pour que la « planète rouge » devienne un désert froid et sec ? Nous ne le savons pas encore avec certitude ; certains théoriciens pensent que l'axe de rotation de Mars a connu des variations d'inclinaison telles qu'elles ont provoqué des glaciations catastrophiques. L'axe de rotation de la Terre aurait, au contraire, été stabilisé par la présence de la Lune.
Des lunes singulières
Notre connaissance des planètes géantes a connu une véritable révolution grâce aux deux sondes américaines Voyager. Ce sont elles qui ont révélé au grand public et aux chercheurs l'étonnante variété des planètes géantes, les secrets de l'atmosphère de Jupiter, la multiplicité des anneaux de Saturne et les tempêtes de Neptune. Autour de ces planètes gravitent des lunes singulières : ainsi, Io, l'un des satellites de Jupiter, est le siège d'un volcanisme actif qui renouvelle sa surface très rapidement (à l'échelle cosmique) ; Europe, autre satellite de Jupiter, apparaît entièrement recouvert d'une banquise qui cache probablement un océan liquide sous-jacent ; Titan, principal satellite de Saturne, est enveloppé d'une épaisse atmosphère à base d'azote où les planétologues espèrent déceler les traces de processus analogues à ceux qui ont conduit à l'apparition de la vie sur la Terre.
Petits corps et origine du système solaire
L'inventaire du système solaire ne s'arrête pas au Soleil et à ses planètes. L'espace interplanétaire contient des myriades de petits corps, des poussières de quelques micromètres seulement aux astéroïdes de quelques dizaines ou centaines de kilomètres de diamètre, en passant par les noyaux glacés de comètes de quelques kilomètres. Tous ces corps ont peu évolué depuis la formation des planètes, il y a quatre milliards et demi d'années environ, et leur étude est donc très importante pour comprendre l'origine du système solaire. La composition chimique des noyaux cométaires est l'une des clefs de l'énigme, mais il est très difficile de la déterminer à partir d'observations effectuées au sol.
Là encore, les sondes spatiales s'avèrent indispensables. C'est ainsi qu'en 1986 plusieurs sondes, notamment l'européenne Giotto, se sont approchées de la comète de Halley, et qu'en 2004 l'Agence spatiale européenne a lancé Rosetta, destinée à rencontrer en 2014 la comète Tchourioumov-Gerasimenko (ou, selon la graphie anglo-saxonne, Churyumov-Gerasimenko) et à la suivre sur son orbite pendant dix-huit mois.
La recherche des planètes extrasolaires
Une grande découverte des années 1990 a été celle de planètes autour d'autres étoiles que le Soleil. Au début de 2004, on en dénombrait déjà plus de 100. Toutefois, les limitations des méthodes de détection actuelles, qui reposent sur l'observation à partir du sol de petites perturbations dans le mouvement de l'étoile, interdisent de détecter des planètes de type terrestre. Les planètes déjà recensées sont pour la plupart des géantes plus massives que Jupiter et qui gravitent à faible distance de leur étoile. On a donc du mal à imaginer qu'elles puissent abriter une forme quelconque de vie. L'étape suivante viendra d'observations spatiales, comme celles du satellite français COROT (lancement prévu en 2006) ou, plus tard, du satellite européen GAIA (lancement envisagé en 2009) qui pourra faire l'inventaire de toutes les étoiles possédant des planètes dans un rayon de 1 000 années-lumière autour de la Terre. Une fois détectées des planètes du type terrestre, on pourra tenter de déterminer si elles sont entourées d'une atmosphère et si celle-ci contient de l'oxygène ou de l'ozone, indice quasi certain de la présence de vie.
L'étude du Soleil
L'étoile autour de laquelle tourne notre planète, le Soleil, commence à nous être mieux connue, depuis son cœur jusqu'à sa région la plus externe, la couronne. C'est heureux, car notre connaissance du Soleil est à la base de celle de toutes les autres étoiles. Certains problèmes subsistent cependant, comme celui de comprendre pourquoi la couronne solaire est si chaude (plusieurs millions de degrés). L'étude des vibrations solaires, ou héliosismologie, est une science nouvelle qui permet de mieux comprendre la structure interne du Soleil, connaissance indispensable puisque c'est là que se trouve le « moteur » thermonucléaire de l'astre. Ce que nous savons du Soleil provient d'observations au sol, en lumière visible et dans le domaine radio, mais aussi d'observations effectuées dans l'espace par divers satellites, notamment l'européen SOHO (lancé en 1995). L'enjeu majeur de ces observations est de comprendre l'origine du cycle d'activité solaire de onze ans. À terme, on espère parvenir à prédire les « sautes d'humeur » du Soleil, ses orages et ses éruptions. Cela serait fort utile car ces phénomènes ne sont pas sans effet sur les activités humaines : brouillage des radiocommunications, courts-circuits sur les lignes à haute tension à l'origine d'importantes pannes d'électricité, dommages apportés aux équipements électroniques des satellites… L'enjeu économique de la « météorologie solaire », même balbutiante, est considérable. Certains chercheurs pensent même que les humeurs du Soleil pourraient avoir une influence sur le climat terrestre.
L'astrophysique stellaire
Le Soleil est l'étoile de référence des astronomes. Par son âge, sa masse et sa composition, c'est une étoile moyenne, comme il en existe des milliards dans notre galaxie. Mais on trouve aussi une multitude d'étoiles plus petites, et d'autres plus massives et plus rares. La masse des étoiles varie dans une large palette, depuis les minuscules naines brunes qui ne sont pas assez massives pour que des réactions thermonucléaires s'allument en leur centre, jusqu'aux énormes étoiles bleues qui ne vivent que quelques millions d'années avant d'exploser sous les traits de supernovae.
Le Soleil, quant à lui, se trouve à peu près à la moitié de sa vie, dont la durée estimée est de l'ordre de 10 milliards d'années. En effet, les étoiles ne sont pas éternelles ! Les grandes lignes de leur évolution, qui dépend principalement de leur masse et accessoirement de leur composition chimique, sont assez bien connues. Les phases qui restent les plus mystérieuses sont leur naissance et, dans une moindre mesure, leur mort. On sait que, selon sa masse initiale, une étoile finit en naine blanche (cas du Soleil), en étoile à neutrons ou en trou noir. Un astre compact comme une étoile à neutrons ou un trou noir peut happer la matière d'une étoile compagne et s'entourer d'un disque de matière extrêmement chaud où vont se produire toutes sortes de phénomènes d'une violence inouïe. Ces derniers se traduisent par des sursauts d'émission de rayonnements X ou γ. Les phases terminales de la vie des étoiles constituent donc l'un des domaines de prédilection de l'astronomie des hautes énergies.
Les secrets de la naissance des étoiles
Quant à la naissance des étoiles, elle reste l'une des questions ouvertes de l'astronomie. Pourquoi se forme-t-il de petites étoiles et des grosses, dans des proportions qui semblent peu varier d'une extrémité à l'autre de notre galaxie ? Pourquoi les étoiles naissent-elles le plus souvent en couples, voire en « multiplets » ? Ces processus sont restés longtemps mal connus, en grande partie parce que les « maternités » d'étoiles se situent au cœur des nuages interstellaires et restent cachées à l'observation aux longueurs d'onde de la lumière visible à cause de la présence de grandes quantités de poussières dans ces nuages. Les observations dans les domaines infrarouge et radio commencent à lever une partie du voile. On s'est ainsi aperçu que la naissance des étoiles s'accompagne de phénomènes d'éjection de matière jusqu'à des distances qui atteignent l'année-lumière. Il semble aussi acquis que la plupart des étoiles naissent au sein d'un disque de gaz et de poussières qui disparaît au bout de quelques millions d'années. Peut-on pour autant en déduire que dans ce disque se sont formées des planètes ? Le débat reste ouvert.
Les nuages de gaz interstellaire dans lesquels naissent les étoiles font également partie des objets de l'astrophysique qui demeurent mal compris, en partie à cause des limitations des observations, mais aussi à cause de leur complexité qui rend difficile leur description complète. Ce sont pourtant de fabuleux laboratoires de physique et de chimie, mariant les températures les plus extrêmes comme les densités les plus faibles ; là s'élaborent petit à petit les poussières qui donneront un jour naissance à des planètes, les pellicules de glace qui donneront un jour naissance à des océans. Certains astronomes pensent même que les molécules nécessaires à l'apparition de la vie, les molécules prébiotiques, auraient été élaborées au sein de ces nuages interstellaires.
L'étude de la Galaxie
Étoiles, gaz et poussières sont les ingrédients qui composent une galaxie, et notamment la nôtre, que les études accumulées depuis la fin du xixe s. ont permis de mieux connaître. Notre galaxie comporte un disque avec un renflement central, le bulbe, une structure allongée émanant de ce renflement, la barre, et plusieurs bras spiraux qui s'enroulent dans le disque. Le Soleil n'est pas situé au centre, mais plutôt à la périphérie. Le disque est noyé dans un halo qui contient des étoiles, du gaz, mais aussi de grandes quantités de matière qui n'émet aucune lumière et reste donc parfaitement mystérieuse. La présence de cette matière sombre (ou matière noire) se trahit par les forces de gravité qu'elle exerce sur les étoiles et le gaz environnants, mais on ignore toujours sa nature réelle. S'agit-il de gaz, par exemple d'hydrogène, trop froid pour émettre du rayonnement ? de naines brunes ? de grosses planètes du type de Jupiter ? ou de particules élémentaires ? Le problème n'est pas mince car ce sont au moins 90 % de la masse de l'Univers qui échappent ainsi aux observations : cela donne la mesure de l'ignorance des astronomes !
Les dimensions de notre galaxie ont plusieurs fois été révisées. Les résultats des mesures effectuées au début des années 1990 par le satellite européen Hipparcos ont conduit à une révision de l'ordre de 15 % de toute l'échelle des distances. Il faut dire que si l'on se limite aux observations en lumière visible, la profondeur que l'on peut sonder dans le disque de notre galaxie se limite à quelques dizaines d'années-lumière. En particulier, il est impossible d'avoir une vue directe du centre de la Galaxie, région pourtant fort intéressante. Cependant, par des observations dans d'autres domaines du spectre (rayonnement gamma, ondes radio) on a de fortes présomptions de la présence d'un volumineux trou noir au centre de la Galaxie. L'activité violente que l'on observe au centre de certains objets extérieurs à notre galaxie, les galaxies à noyau actif et les quasars, est attribuée à la présence en leur cœur d'un trou noir géant dont la masse atteint plusieurs dizaines de millions de fois celle du Soleil. Selon certains astrophysiciens, toutes les galaxies contiendraient un trou noir central, mais la plupart du temps celui-ci ne se manifesterait pas car il serait sous-alimenté en gaz. Confirmer la présence d'un trou noir au centre de notre galaxie viendrait donc conforter cette théorie.
L'astrophysique extragalactique
Le monde des galaxies est fort varié, mais on peut distinguer principalement deux grandes classes de galaxies : celles en forme de spirales, comme la nôtre, et les elliptiques, en forme de ballon de rugby. La grande question, toujours non tranchée, est celle de l'inné et de l'acquis. Les galaxies naissent-elles spirales, ou bien le deviennent-elles ? Restent-elles semblables à elles-mêmes pendant des milliards d'années, ou bien se construisent-elles progressivement, par accrétion d'entités plus petites ? Les collisions de galaxies jouent-elles un rôle dans leur évolution ? Il n'y a plus de doute aujourd'hui que les galaxies ont beaucoup changé depuis leur formation. La proportion exacte d'inné et d'acquis semble dépendre des régions de l'Univers et les galaxies situées dans des amas (grandes structures regroupant des centaines ou des milliers de galaxies) semblent différentes des autres. Il est clair également que certaines galaxies elliptiques sont nées de la fusion de deux galaxies spirales, mais est-ce vrai pour toutes les elliptiques ?
La cosmologie
Avec la question de la naissance des galaxies, on entre de plain-pied dans le domaine de la cosmologie. Les observations du satellite américain COBE (COsmic Background Explorer) au début des années 1990 ont conforté les idées des spécialistes sur les premiers instants de l'Univers et le modèle du big bang « chaud ». D'après celui-ci, l'Univers, primitivement très dense et très chaud, serait brutalement entré en expansion il y a quelque 15 milliards d'années et ne cesserait de se dilater depuis. Cette expansion de l'Univers, reconnue par l'astronome américain Edwin Hubble à la fin des années 1920, est l'une des données de base de la cosmologie moderne. Paradoxalement, les tout premiers instants de l'Univers sont mieux connus que la période qui s'étend d'environ 300 000 ans après le big bang à la formation des premières galaxies. Grâce aux grands télescopes modernes, véritables machines à remonter le temps (du fait de la vitesse finie de propagation de la lumière, plus l'on observe loin dans l'espace, plus l'on observe loin dans le passé), on sait maintenant que moins d'un milliard d'années après le big bang il y avait déjà des galaxies ; mais les simulations sur ordinateur ont encore un peu de mal à reproduire toutes les observations. Pour cette question, on attend beaucoup du successeur du télescope spatial Hubble, le JWST (James Webb Space Telescope), un télescope spatial de 6 m de diamètre qui observera dans l'infrarouge, ainsi que d'un vaste réseau de radiotélescopes fonctionnant aux longueurs d'onde millimétriques et submillimétriques, ALMA (Atacama Large Millimeter Array), qui devraient tous deux entrer en service vers 2010.
Qu'en est-il de notre avenir lointain ? On sait que le futur de l'expansion de l'Univers dépend de la quantité de matière qu'il contient : la gravité créée par la matière est la seule force capable de contrecarrer l'expansion. On sait aussi que la matière lumineuse de l'Univers, celle que l'on recense quand on compte les étoiles et le gaz, représente moins de 10 % de la matière présente dans une galaxie ; à plus grande échelle, c'est pire encore et la quantité de matière sombre est encore plus importante. La mesure exacte est difficile, mais si la majeure partie de la matière qui constitue l'Univers reste effectivement invisible aux astronomes, ils sont néanmoins quasiment certains que l'Univers est appelé à devenir de plus en plus dilué et de plus en plus froid. D'autant plus que des observations récentes de supernovae lointaines semblent indiquer que son expansion, bien loin de ralentir, s'accélère.